一、電廠鍋爐存在的腐蝕磨損問(wèn)題
我國(guó)火力發(fā)電廠很多,它對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展起到了很大的推動(dòng)作用。但是,在火力發(fā)電廠中,高溫高壓鍋爐的水冷壁管、過(guò)熱器管、再熱器管、省煤器管(簡(jiǎn)稱鍋爐四管)的腐蝕磨損問(wèn)題是長(zhǎng)期困擾電廠的經(jīng)濟(jì)和技術(shù)問(wèn)題。高溫腐蝕和沖蝕磨損使管壁減薄,嚴(yán)重者會(huì)造成“四管”的泄露,大大增加了電廠的臨時(shí)性檢修和大修的工作量,給電廠造成很大的經(jīng)濟(jì)損失。鍋爐“四管”的防護(hù)就成為電力行業(yè)急待解決的難題。近年來(lái),由于高溫、高壓、腐蝕、磨損和疲勞等原因引起電廠鍋爐“四管”早期爆管呈逐年上升的趨勢(shì)。我國(guó)是一個(gè)以火力發(fā)電為主的國(guó)家,據(jù)調(diào)研,大港電廠3號(hào)機(jī)組意大利進(jìn)口的鍋爐,1991年9月投產(chǎn),1995年大修期間發(fā)現(xiàn)水冷管壁減薄現(xiàn)象,一次就換管2000米;1996年小修期間,又發(fā)現(xiàn)大面積減薄,進(jìn)行了大面積換管。西柏坡電廠鍋爐水冷壁材料為20號(hào)鋼,水冷壁溫度400度以上,鍋爐運(yùn)行一年后,水冷壁鋼管平均減薄1.0~1.6mm,鍋爐每九個(gè)月小修一次,三年大修一次,因此每次小修都要更換水冷管壁。據(jù)統(tǒng)計(jì),1982年至1985年四間,我國(guó)50MW以上火力發(fā)電廠共發(fā)生鍋爐事故949起,其中“四管”泄露事故占305起,占事故總數(shù)的32%。僅西北電網(wǎng)1988年就發(fā)生“四管”泄露事故150起,占全年鍋爐事故239起的62.7%。由于鍋爐管道的高溫腐蝕、沖蝕引起的損失是多方面的,除了更換新管和維修鍋爐造成的經(jīng)濟(jì)損失外,鍋爐停運(yùn)造成的損失也是巨大的。有關(guān)文獻(xiàn)報(bào)道,我國(guó)100MW以上機(jī)組鍋爐“四管”爆管事故造成的停機(jī)搶修時(shí)間約占整個(gè)機(jī)組非計(jì)劃停用時(shí)間的40%左右,占鍋爐設(shè)備本身非計(jì)劃停用時(shí)間的70%以上。另外,鍋爐的突發(fā)性爆管事故對(duì)電廠大安全、穩(wěn)發(fā)電的危害是十分嚴(yán)重的。根據(jù)1992年我國(guó)火力發(fā)電設(shè)備事故的統(tǒng)計(jì)表明,當(dāng)年鍋爐事故占全部發(fā)電事故的56%,而鍋爐“四管”爆破問(wèn)題卻占到了全部鍋爐事故的64%,其中水冷壁占了27.8%。產(chǎn)生事故的原因除了管材的焊接質(zhì)量外,主要是由于鍋爐腐蝕、磨損等引起,鍋爐管道的腐蝕問(wèn)題是久未解決的技術(shù)問(wèn)題。高溫腐蝕和沖蝕使管壁減薄,嚴(yán)重者會(huì)造成“四管”的泄露,大大增加了電廠的臨時(shí)性檢修和大修的工作量,給電廠造成很大的經(jīng)濟(jì)損失。緊急鍋爐停爐搶修不僅打亂了電廠的正常發(fā)電秩序,減少了發(fā)電量,而且增加了工人的勞動(dòng)強(qiáng)度和額外的檢修費(fèi)用,同時(shí)也干擾了整個(gè)地區(qū)電網(wǎng)系統(tǒng)的正常調(diào)度,影響當(dāng)?shù)氐墓まr(nóng)業(yè)生產(chǎn),所造成的社會(huì)效益損失更為巨大。
通常爆管后更換管子費(fèi)用特別昂貴,常常需要花上數(shù)十萬(wàn)元,大大地提高了鍋爐運(yùn)行的成本,而且電站暫停運(yùn)行,會(huì)造成其它多方面的損失。采用這種切割、換管、然后焊接的方法,非常費(fèi)時(shí)、費(fèi)工、費(fèi)料。鍋爐運(yùn)行時(shí),不僅處于高溫高壓條件下,同時(shí)還接觸腐蝕性的燃料和氣體,因此極易發(fā)生腐蝕,特別時(shí)高溫腐蝕對(duì)鍋爐的正常運(yùn)行和使用壽命影響很大。水冷壁的高溫腐蝕就是其中之一。我國(guó)動(dòng)力用煤的質(zhì)量偏差,其含灰量與含硫都較高,而且一般電站鍋爐燃用煤種又多變,所以經(jīng)常發(fā)生爐內(nèi)水冷壁沾污或結(jié)渣現(xiàn)象,而沾污或結(jié)渣的水冷壁又易形成高溫腐蝕。水冷壁的高溫腐蝕時(shí)一個(gè)極其復(fù)雜的物理化學(xué)過(guò)程,它首先于五、六十年代發(fā)生在液態(tài)排渣鍋爐上。我國(guó)最早發(fā)現(xiàn)火電廠鍋爐水冷壁高溫腐蝕是在六十年代初期,發(fā)生在寶雞電廠的捷克生產(chǎn)的四臺(tái)液態(tài)排渣煤粉爐上。但是,近年來(lái)隨著鍋爐參數(shù)的不斷增大和燃用煤質(zhì)的惡化,在一些固態(tài)排渣鍋爐的水冷壁上亦出現(xiàn)了較重的高溫腐蝕現(xiàn)象。研究表明,只要水冷壁管上有結(jié)積物,周圍氣氛和管壁溫度達(dá)到一定條件,任何型式、參數(shù)和容量的鍋爐都會(huì)發(fā)生這種腐蝕。如馬頭電廠的前蘇聯(lián)制造的ΕП670/140型自然循環(huán)固態(tài)排渣煤粉爐、上海石洞口和江蘇諫壁電廠的大部分鍋爐等均相繼發(fā)生了水冷壁高溫腐蝕的現(xiàn)象。鍋爐水冷壁的高溫腐蝕是指鍋爐爐膛燃燒區(qū)向火側(cè)管壁金屬腐蝕損壞的現(xiàn)象。研究和經(jīng)驗(yàn)表明,水冷壁的高溫腐蝕多發(fā)生在燃用劣質(zhì)的含硫高的無(wú)煙煤和貧煤鍋爐中,所發(fā)生的區(qū)域通常在燃燒器中心線位置標(biāo)高上下,結(jié)渣和不結(jié)渣的受熱面均可能發(fā)生,腐蝕速度一般為1.1~1.5mm/年,有的高達(dá)2mm/年。通常管子向火側(cè)的正面點(diǎn)腐蝕得最快,若發(fā)生爆管都發(fā)生在管子的正面,且管子向火側(cè)減薄得最多,管子側(cè)面減薄最少,而管子背火側(cè)幾乎不減薄。另外,水冷壁管的高溫腐蝕是比氧化更為嚴(yán)重的一種腐蝕形式,據(jù)測(cè)定,水冷壁管的氧化速度和高溫腐蝕速度之比約為1:75。存在高溫腐蝕的鍋爐,運(yùn)行若干年后會(huì)導(dǎo)致?tīng)t管爆破,設(shè)備運(yùn)行可靠性下降,檢修時(shí)間增多和換管費(fèi)用增加等問(wèn)題,這樣對(duì)機(jī)組的經(jīng)濟(jì)和安全運(yùn)行構(gòu)成了嚴(yán)重威脅。如黃石電廠日本制造的300MW機(jī)組鍋爐和德洲電廠國(guó)產(chǎn)300MW機(jī)組鍋爐燃燒器區(qū)域水冷壁,在運(yùn)行三年后均發(fā)現(xiàn)高溫腐蝕從而大面積換管。據(jù)統(tǒng)計(jì),1991年水冷壁爆漏所損失的電量占總電量的13.35%,而水冷壁的高溫腐蝕是引起許多爆漏的主要原因。因此,防止水冷壁高溫腐蝕是一項(xiàng)刻不容緩的任務(wù)。
二、電廠鍋爐水冷管高溫氧化腐蝕機(jī)理和形式
“四管”壁面的高溫環(huán)境使其遭受高溫氧化腐蝕;燃料中含有Na、K、S等,燃燒后形成的Na2O和K2O凝結(jié)在管壁上,與煙氣中的SO3化合生成硫酸鹽。在高溫作用下,管壁表面形成低熔點(diǎn)的復(fù)合硫酸鹽,引起熱腐蝕;燃燒形成的飛灰在氣流的作用下沖刷爐管表面造成沖蝕。由于“四管”高溫腐蝕、沖蝕造成的設(shè)備損壞和機(jī)組被迫關(guān)閉時(shí)有發(fā)生,嚴(yán)重地危及電廠的安全運(yùn)行。煤粉中的硫化物在燃燒時(shí)所產(chǎn)生的腐蝕性物質(zhì)對(duì)鍋爐管壁有嚴(yán)重的腐蝕作用,主要表現(xiàn)在:
1.煤粉燃燒時(shí)產(chǎn)生的硫化氫、二氧化硫等腐蝕性氣體與管壁金屬發(fā)生化學(xué)反應(yīng)而產(chǎn)生腐蝕。
2.不可燃硫在高溫作用下生成硫酸鹽混入灰粉中附著于管壁表面并分解出三氧化硫,而三氧化硫又與堿金屬硫酸鹽的化合物及氧化鐵組合成活性腐蝕成分,這種組分在環(huán)境溫度高于500℃時(shí)呈流動(dòng)狀態(tài),具有強(qiáng)烈的腐蝕性,可以穿過(guò)腐蝕層滲透管壁金屬。煙氣中除含有腐蝕性氣體外,還有二氧化硅、氧化鐵、氧化鋁等粉塵顆粒,它們以硅酸鹽的形式存在,具有一定硬度,表面為不規(guī)則的晶體顆粒,在高溫?zé)煔庵幸源笥?米/秒的速度沖擊管壁,造成管壁沖刷磨損。在以上腐蝕、磨損的交互作用下,鍋爐管壁每年以1.1mm~1.5mm,最高可達(dá)2mm/年的速度減薄。鍋爐管道的工作環(huán)境具備了典型的腐蝕條件:水冷壁管服役溫度360—410℃以上,而其壁面煙氣溫度高達(dá)1300℃。過(guò)熱器等其它管道的工作溫度更高,表面的局部溫度可達(dá)650℃。實(shí)踐證明,在300—500℃的范圍內(nèi),管壁外表面溫度每升高50℃將使受熱面的腐蝕速度增加一倍。以天津大港電廠為例,該電廠實(shí)際燃煤為山西貧煤和陽(yáng)泉無(wú)煙煤的混和煤。煤中含硫量為0.91%~4.31%,另外煤中含有一定量的Na2O、K2O和其它礦物質(zhì)。在煤燃燒過(guò)程中,會(huì)產(chǎn)生硫酸鹽附著于管壁上,從而引起了低溫?zé)岣g。水冷壁高溫腐蝕的發(fā)生機(jī)理水冷壁高溫腐蝕是一個(gè)極度極其復(fù)雜的物理化學(xué)過(guò)程,從其發(fā)生的機(jī)理來(lái)一般可分為以下三類:硫酸鹽型(M2SO4、M2S2O7)、硫化物型(M2S、H2S)和氯化物(MCl、HCl)。在煤粉鍋爐中,硫酸鹽型高溫腐蝕主要發(fā)生在高溫受熱面上;硫化物型高溫腐蝕主要發(fā)生在爐膛水冷壁上;氯化物型高濁腐蝕則主要發(fā)生在小型鍋爐的過(guò)熱器上和大型鍋爐燃燒器區(qū)域的水冷壁管上。水冷壁高溫腐蝕往往由這三種類型復(fù)合作用的結(jié)果。
(一)硫酸鹽型高溫腐蝕機(jī)理
硫酸鹽高溫腐蝕主要是煤中的堿性成分通過(guò)生成硫酸鹽和焦硫酸來(lái)對(duì)水冷壁進(jìn)行腐蝕。其腐蝕反應(yīng)過(guò)程如下:
A.生成硫酸鹽(M2SO4)煤中堿性成分轉(zhuǎn)變成硫酸鹽有兩種途徑:一是在爐內(nèi)高溫下與氯結(jié)合的揮發(fā)的鈉,除一部分被熔融硅酸鹽捕捉外,余下的則與煙氣中SO3反應(yīng),轉(zhuǎn)換成Na2SO4;二是存在于非揮發(fā)性的鋁硅酸鹽中的鉀,通過(guò)與揮發(fā)的鈉置換反應(yīng)被釋放出來(lái)(可占硅酸鹽40%)并與SO3化合,而轉(zhuǎn)換成的K2SO4。
B.生成焦硫酸鹽(M2S2O7)當(dāng)堿性金屬硫酸鹽沉積到受熱面上后會(huì)再吸收SO3并與Fe2O3、AL2O3作用生成焦硫酸鹽(M2S2O7)。由于焦硫酸鹽在管壁溫度范圍內(nèi)呈液態(tài),因而產(chǎn)生更強(qiáng)烈的腐蝕性。研究表明,在附著層的硫酸鹽中,只要有5%的硫酸鹽存在,腐蝕過(guò)程將強(qiáng)烈地加劇。
C.硫酸鹽對(duì)水冷壁管的腐蝕此外,受熱面上熔融的硫酸鹽(M2SO4)再吸收SO3并在Fe2O3與Al2O3的作用下,能生成復(fù)合硫酸鹽M3(Fe,Al)(SO4)3。。D、焦硫酸鹽對(duì)水冷壁管的腐蝕在附著層中的焦硫酸鹽(M2S2O7),由于它的熔點(diǎn)低,在通常的壁溫情況下即在附著層中呈現(xiàn)熔融狀態(tài),這樣它就與Fe2O3反應(yīng)生成M3Fe(SO4)3,即形成反應(yīng)速度很快的熔鹽型腐蝕。上述幾個(gè)過(guò)程便破壞了水冷壁管的保護(hù)層,使煙氣中的腐蝕性成分直接接觸管壁,加劇了腐蝕。硫酸鹽型水冷壁高溫腐蝕的過(guò)程通常都伴隨著的結(jié)焦或結(jié)渣的發(fā)生。
?。ǘ┝蚧镄透邷馗g機(jī)理
在燃燒器區(qū)域內(nèi),由于尚未燃盡的火焰直接沖刷到水冷壁管使得燃料繼續(xù)燃燒時(shí)消耗了大量氧氣,在該處形成還原性或半還原性氣氛,從而使水冷壁管的外表面產(chǎn)生了硫腐蝕。燃燒過(guò)程中生成的H2S氣體和堿金屬硫化物R2S均可與管壁發(fā)生腐蝕反應(yīng)。實(shí)驗(yàn)表明HS的腐蝕性大大超過(guò)SO高溫腐蝕速度與煙氣中HS濃度成正比。同時(shí)實(shí)驗(yàn)還發(fā)現(xiàn),只有當(dāng)HS的含量大于0.01%時(shí),腐蝕的危險(xiǎn)才顯著地反應(yīng)出來(lái)。由于硫化物型高溫腐蝕所生成的硫化物不穩(wěn)定,易于分解和剝落,其晶格缺陷多。熔點(diǎn)沸點(diǎn)低,保護(hù)性極差。硫化物型高溫腐蝕的具體腐蝕反應(yīng)過(guò)程如下:
A.產(chǎn)生自由的硫原子:煤粉中的黃鐵礦(FeS2)粉末沖刷到水冷壁上時(shí),受高溫作用而分解成自由的硫原子和硫化亞鐵(FeS)。此外,在管壁附近的煙氣中也存在著一定濃度的硫化氫(H2S),它與二氧化硫化合,發(fā)生置換反應(yīng)而生成自由的硫原子。
B.生成硫化亞鐵(FeS)在還原性氣氛中,由于缺氧,原子狀態(tài)的硫能單獨(dú)存在。當(dāng)水冷壁管的壁溫為620K時(shí),便發(fā)生硫化反應(yīng),即原子狀態(tài)的硫與鐵發(fā)生反應(yīng),生成硫化亞鐵(FeS)。此外,在管外壁溫度超過(guò)537K時(shí),H2S還可以透過(guò)疏松的Fe2O3,而直接與較致密的磁性氧化鐵層Fe3O4(即Fe2O3--FeO)中復(fù)合的FeO作用生成硫化亞鐵(FeS)。C.形成磁性氧化鐵(Fe3O4)上述反應(yīng)生成的硫化亞鐵(FeS),在高溫下緩慢氧化而生成黑色的磁性氧化鐵(Fe3O4)的二氧化硫(SO2)。如此循環(huán)反復(fù),水冷壁管便被腐蝕破壞了。另外,生成的SO2在渣層內(nèi)由于灰渣的催化作用有可能轉(zhuǎn)化成SO3,從而促進(jìn)硫酸鹽的腐蝕。
(三)氯化物型高溫腐蝕機(jī)理
近年來(lái)很多研究結(jié)果表明,燃用高氯化物燃料時(shí),爐內(nèi)氯化氫腐蝕是確實(shí)存在的。因此,應(yīng)該給予重視。煤中的氯在加熱過(guò)程中以NaCl形式釋放出來(lái),而NaCl易與煙氣中的H2O、SO2和SO3反應(yīng),生成硫酸鈉和HCl氣體。此外,NaCl可以在水冷壁上發(fā)生凝結(jié),凝結(jié)的NaCl在繼續(xù)硫酸鹽化的同時(shí)也生成HCl。因此,沉積層中的HCl濃度比煙氣中的大得多。這樣會(huì)使Fe2O3氧化膜發(fā)生破壞,并且在CO或H2的氣氛下更甚。由于Fe2O3氧化膜轉(zhuǎn)化成多孔、松脆易脫落的FeO形式,且反應(yīng)生成的FeCl2易揮發(fā),所以HCl連同SO3和O2很容易擴(kuò)散到管子金屬表面,加快水冷壁腐蝕的速度。
三、影響水冷壁高溫腐蝕的因素
綜合各種類型高溫腐蝕發(fā)生的條件,可以概括為:煤質(zhì)特性、管壁溫度和燃燒工況組織等三個(gè)方面。下面分別給予介紹:
1)煤質(zhì)特性燃用無(wú)煙煤和貧煤的鍋爐,煤的著火溫度相對(duì)較高,燃燒困難,容易產(chǎn)生不完全燃燒和火焰拖長(zhǎng),因而形成還原性氣氛,致使腐蝕性增強(qiáng)。含硫量高的煤引起腐蝕的可能性較大。硫的含量越高,腐蝕性介質(zhì)的濃度就越高,游離和硫化物含量也越大,因而同金屬管壁發(fā)生急劇反應(yīng)的可能性也越大,從而破壞水冷壁管表面保護(hù)層,也就是說(shuō)硫的含量越高,腐蝕性越強(qiáng)。煤中氯和堿金屬成分含量過(guò)高,都很容易引起鍋爐水冷壁管的高溫腐蝕。灰分雖然不能直接對(duì)水冷壁管產(chǎn)生腐蝕,但是含灰量越高,對(duì)管壁的磨損就越大,因磨損而失去保護(hù)層的管壁遭受高溫腐蝕的可能性大大增加了。因此,磨損與高溫腐蝕有著密切的關(guān)系,使得煤中的灰分也對(duì)水冷壁高溫腐蝕產(chǎn)生間接的影響。
2)管壁的溫度燃燒器區(qū)域附近的水冷壁的熱流密度很大(約200~500KW/m2),溫度梯度也很大,管壁溫度常在623~673K,這對(duì)管壁的高溫腐蝕有很大的影響。管壁溫度越高,腐蝕速度越快。
3)高溫火焰沖刷水冷壁煙氣中帶有微量附上性氣體如:SO2、SO3、H2S、HCl,它們會(huì)對(duì)管壁產(chǎn)生腐蝕作用,若高溫火焰沖刷水冷壁,則腐蝕產(chǎn)物又極易被高溫火焰中的灰粒和未燃盡的煤粉沖刷掉,露出新的表面,從而再腐蝕,使腐蝕與磨損交替進(jìn)行,這樣大大加快了腐蝕的速度。此外,聯(lián)邦德國(guó)研究表明:火焰沖刷和磨損,從而加速高溫腐蝕的發(fā)展。磨損最嚴(yán)重的部位僅僅集中在火焰有效沖刷水冷壁的區(qū)域內(nèi),這也充分證明了磨損作用的影響。
4)煤粉的粗細(xì)程度煤粉的粗細(xì)程度對(duì)腐蝕也有較大的影響。煤粉越粗,就越不易燃盡,導(dǎo)致火焰拖長(zhǎng),進(jìn)一步燃燒時(shí),發(fā)生缺氧而形成還原性氣氛,產(chǎn)生腐蝕。同時(shí)粗大的煤粒動(dòng)量較大,容易沖刷水冷壁而產(chǎn)生磨損,破壞水冷壁的氧化保護(hù)膜,加劇腐蝕。
5)形成還原性氣氛根據(jù)研究,發(fā)生腐蝕的管壁附近,沒(méi)有例外地都有還原性氣氛。而上述高溫火焰沖刷水冷壁和燃用較粗的煤粉,都易形成還原性氣氛。還原性氣氛回導(dǎo)致灰粉熔點(diǎn)的下降和灰沉積過(guò)程的加快,以及H2S含量的猛烈增加,從而引起受熱面的結(jié)渣,加劇腐蝕;同時(shí),還原性氣氛還會(huì)加速硫化物腐蝕。
6)風(fēng)粉的組織與配合給灰粉量的不穩(wěn)定、過(guò)量空氣不足、各燃燒器風(fēng)粉分配不均等,比較容易造成局部熱負(fù)荷過(guò)高和高溫火焰沖刷水冷壁管,并可能形成還原性氣氛,從而進(jìn)一步加劇鍋爐水冷壁管的高溫腐蝕。
北京乾茂興業(yè)科技有限公司是致力于高質(zhì)量的熱噴涂材料的開(kāi)發(fā)研究和高性能涂層的制備,生產(chǎn)電弧噴涂絲、鍋爐噴涂絲、鎳基合金噴涂絲、進(jìn)口粉芯噴涂絲材等,強(qiáng)大的硬件生產(chǎn)設(shè)備造就了我們得材料質(zhì)量標(biāo)準(zhǔn)和涂層性能標(biāo)準(zhǔn),聯(lián)系電話:400-158-1868。